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ABSTRACT

Katabatic winds on ice sheets and glaciers are buoyancy-driven flows, much like turbidity currents in the
ocean. These winds are driven by radiative cooling of the ice surface and are not resolved by the typical
horizontal and vertical discretization of general circulation models; therefore, a parameterization of their
magnitude is desirable. In this paper, it is shown that the simplest such parameterization, based on the
classical Prandtl model of slope winds, is physically inadmissible, and an improved model, which removes
this irregularity, is presented. It is also shown that the improved model allows favorable comparison with
both observations and regional numerical models.

1. Introduction

Katabatic winds are slope winds that occur over ice
sheets and glaciers, and which arise due to the radiative
cooling of the surface, which forms a layer of dense,
cold air that flows down the ice slope under its own
weight (Davolio and Buzzi 2002). These winds are re-
markably unidirectional, and can be very persistent and
strong (Parish and Waight 1987; King and Turner
1997). Typical depths of the katabatic wind layer are of
the order of tens to hundreds of meters and, because of
this, such winds are not well represented in atmospheric
weather prediction models. It is thus of interest to de-
rive approximate parameterizations of katabatic winds,
both as inputs to GCMs, and also to serve as inputs to
models of other processes which involve surface winds,
such as the wind-blown erosion and transport of snow,
and the formation of mega-dunes and sastrugi.

The simplest model of a katabatic wind is perhaps
that of Prandtl (1952), who considered the advection
and turbulent diffusion of momentum and sensible heat
in a gravity current. Slightly more detailed is the model
of Ball (1956, 1960), which allows for along-slope varia-
tions of temperature and wind speed. While there is
little doubt that momentum and sensible heat transport
are the dominant factors in the formation and mainte-

nance of katabatic winds, other factors may also be
important. Of these, moisture transport and the effects
of rotation will have a quantitative effect. In Antarctica,
and perhaps other continental ice sheets such as the
former Laurentide ice sheet, the atmosphere is dry, and
moisture advection is unimportant. The Coriolis force
is significant when the Rossby number U/�L is less
than 1. If we take U � 20 m s�1 and � � 0.7 � 10�4 s�1,
this gives a length scale of some 280 km when the
Rossby number is equal to 1. At the scale of an ice
sheet, Coriolis forces become dominant.

The importance of rotation at large scales raises the
question as to whether slope winds may be forced by
the overlying geostrophic flow. A significant literature
has developed over the last 20 years, which is con-
cerned with the question of how slope winds over ice
sheets are driven at these larger scales, since the fea-
tures of unidirectionality and strength appear to pen-
etrate far into the interior of the Antarctic ice sheet
(e.g., Van Lipzig et al. 2004; Bromwich et al. 2001; Ren-
frew and Anderson 2002; Parish and Waight 1987).
Mostly, high-resolution numerical models have been
used to study this question, and these models are able
to resolve the katabatic wind layer; they also agree fa-
vorably with observations (Parish and Cassano 2003;
Lefebre et al. 2005; Heinemann and Klein 2002). In
some cases, it appears that these external climatological
factors have only a moderate influence on the surface
winds (Bromwich et al. 1996), and the dominant bal-
ance in numerical models is also that of the Prandtl
model between thermal buoyancy and surface drag
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(Nappo and Rao 1987; Skyllingstad 2003; Renfrew
2004).

A different approach to the study of katabatic winds
arises when we seek to parameterize the flows (Oerle-
mans and Grisogono 2002), and this is the approach we
take in this paper. We seek the simplest model that can
credibly represent observations, since the aim is to pro-
vide an analytic solution that can provide an explicit
representation of the momentum and heat fluxes. Our
strategy in doing this is orthogonal to those of high-
resolution regional models, insofar as we aim to build in
complexity gradually rather than all at once. In this
paper, we focus on the Prandtl model, which describes
steady, pure katabatic flow. This model is of interest
because it provides a simple analytic solution of the
governing equations. The physical assumptions made
are that the largest contributions to the momentum
equation are frictional and buoyancy forces, while the
largest contribution to the energy equation is sensible
heat flux, assuming a stably stratified boundary layer.
The classical Prandtl model assumes constant slope,
eddy diffusivity, and thermal conductivity. As discussed
above, these assumptions are qualitatively reasonable
at least. Inclusion of the Coriolis force in the Prandtl
model has been studied by Stiperski et al. (2007).

The Prandtl model also gives a reasonable fit to ob-
served wind speed and potential temperature profiles
(as we will also show below). The main problem with its
solution is its inability to describe the sharp near-
surface gradients of wind speed and potential tempera-
ture that are observed. This is attributed to its assump-
tion of a constant mixing length, which is too large near
the surface. This problem has been addressed both nu-
merically, as in the model of Rao and Snodgrass (1981)
for example, and analytically, using the WKB approxi-
mation,1 by Grisogono and Oerlemans (2001), who
found that there was a good agreement between their
model results and those collected over Breidamerkur-
jökull (Parmhed et al. 2004). Hootman and Blumen
(1983) compared the Prandtl model with that of Rao
and Snodgrass as a fit for data collected in Colorado.
They found that both models agreed well with data, but
near surface temperatures were better simulated by the
Rao and Snodgrass model. The fair agreement of the
classical Prandtl solution with observations provides
support for the underlying physics of the model.

The purpose of this paper is to point out and correct
an anomaly in the parameterizations based on the clas-

sical Prandtl model. We illustrate our argument by ana-
lyzing the simplest model, but our argument will apply
equally well to modified versions such as that studied
by Grisogono and Oerlemans (2001, 2002; see also
Grisogono 2003). The anomaly arises because the ka-
tabatic mass flux depends on the local slope in such a
way that it becomes unbounded as the slope tends to
zero. This error arises because the classical model ig-
nores horizontal divergence, and its correction makes a
significant change to the solution.

In this paper, we modify the classical Prandtl model
to allow for varying slope. For simplicity, we retain the
assumptions of constant eddy diffusivity and thermal
conductivity. To show that the corrected model is rea-
sonable, we then compare both the classical and modi-
fied Prandtl solutions with data collected during the
Katabatic Wind and Boundary Layer Front Experi-
ment around Greenland during 1997 (KABEG’97)
(Heinemann 1999), and numerical results obtained us-
ing the fifth-generation Pennsylvania State University–
National Center for Atmospheric Research (PSU–
NCAR) Mesoscale Model (MM5), adapted for use in a
polar environment (Bromwich et al. 2001), and hereaf-
ter referred to as Polar MM5. Although we make this
comparison to show that the parameterized model can
fit observations, we do not seek to establish that in all
circumstances, the neglect of moisture, Coriolis force,
and external pressure gradient is quantitatively accu-
rate.

2. The Prandtl model

We consider two-dimensional steady, irrotational,
hydrostatic flow over an ice sheet of nonconstant slope
using the (x, �) coordinate system shown in Fig. 1; thus
u is the downslope component of the katabatic wind.

Conservation of mass, energy, and downslope mo-
mentum, together with the hydrostatic approximation

1 The WKB approximation is an asymptotic method, which is
used to solve linear differential equations with slowly varying co-
efficients; see Bender and Orszag (1978).

FIG. 1. Coordinate system in two dimensions.
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for the pressure, and neglecting Coriolis terms for sim-
plicity, yields the system

d�

dt
� �� · u � 0, �2.1�

�cp

dT

dt
�

dp

dt
�

�

�� �kV

�T

�� � � Q, �2.2�

�
du

dt
� ���p

�x
� hx

�p

��� �
�

�� ��V

�u

���, �2.3�

�p

��
� ��g, �2.4�

where u � (u, W), W � w � uhx, (d/dt) � (	/	t) � u · �
and � � [(	/	x), (	/	�)]; kV(z) is an effective thermal
conductivity, 
V(z) a dynamic eddy viscosity and Q rep-
resents radiative and latent heat transfer. Other sym-
bols have their usual meaning. As the katabatic wind
layer has a depth of O(100 m), we assume that the main
mechanism of vertical heat transfer will be turbulent
heat conduction. We also assume that the air in the
katabatic wind layer is dry (reasonable away from the
margins of an ice sheet), and thus advective latent heat
transfer will be negligible.

Equations (2.1)–(2.3) coupled with the hydrostatic
approximation and the perfect gas law are five equa-
tions for the five variables �, u, W, p, and T. To obtain
suitable boundary conditions for T, we briefly consider
the adiabatic temperature, TA(z), and density, �A(z):
assuming a dry adiabat, we follow Fowler (2005) and
use the following expressions

TA�z� � T0 �
gz

cp
, �2.5�

�A�z� � �0�1 �
gz

cpT0
�

Macp

R
� 1

. �2.6�

We note that on Earth, (cpT0/g) � 29 km and (Macp/R) �
3.4; thus we approximate

�A�z� � �0 exp��z
Mag

RT0
�, �2.7�

where (RT0/Mag) � 8.6 km, the scale height of the
atmosphere. Thus

�A�z�

TA�z�
�

�0 exp��z
Mag

RT0
�

T0 �
gz

cP

�
�0

T0�1 �
gz

cPT0
� �

�0

T0
.

�2.8�

In the midlatitudes, the size of Q relative to the ad-
vective terms is O(Ro2), where Ro is the Rossby num-
ber. The Rossby number is O(10�1) for synoptic scales

(see Pedlosky 1979), and thus Q is small (but nonzero).
Ignoring the conductive term in Eq. (2.2), the near adia-
batic tropospheric temperature satisfies

wA��AcpT �A � p�A� � Q, �2.9�

where wA is the vertical velocity in the troposphere, and
a prime denotes differentiation with respect to z. We
can write Q in terms of the Brunt–Väisälä frequency N,
a measured quantity defined by

N2 �
g

�

��

�z
, �2.10�

where 
 is the potential temperature. Using the defini-
tion 
 � T(p0/p)(R/Macp) (Pedlosky 1979) together with
the perfect gas law p � �RT/Ma, some algebraic ma-
nipulation shows that

Q � wA

Macp

R

pA

g
N2. �2.11�

It is estimated that N2 � O(10�4) s�2 (Pedlosky 1979).
We prescribe the standard boundary conditions: at

the ice cap surface, we use those of no slip and a speci-
fied temperature deficit below the local adiabatic tem-
perature,

u � 0, T � TA�h�x�� � �T on � � 0. �2.12�

We wish to match the solution within the katabatic
wind layer to the solution in the planetary boundary
layer, and we therefore pose matching conditions in the
form

u → 0, T → TA�h�x�� as � → �. �2.13�

a. Nondimensionalization

Using the cross section of the Greenland ice sheet
shown in Figs. 2 and 3, we set hD(x) � h0 � h(x), where
h0 � 600 m, in order that the dimensionless ice
cap margin lies at z � 0. We write T � TA[h(x)] �
(�T)T̃, where �T is a typical surface temperature defi-
cit, and use the scales

u � U, W �
HU

l
, x � l, z, h � D, � � H	,

p � p0, � � �0, T � T0, TA � T0, t �
l

U
.

�2.14�

We now have (dimensionlessly) that T � TA � �T̃,
where � � (�T/T0). We choose D by requiring

p0 � �0gD �
�0RT0

Ma
. �2.15�

The scales U and H will be chosen below.
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Defining � � (H/D), Eqs. (2.2), (2.3), and (2.4) be-
come

�
dT

dt
� 


dp

dt
� ��Vl

H � �2T

�	2 � �, �2.16�

F2�
du

dt
� ���p

�x
�

1



hx

�p

�	� �
F2l
V

H

�2u

�	2 , �2.17�

1



�p

�	
� ��, �2.18�

where we define

�V �
kV

�0cpUH
, 
V �

�V

�0UH
, F2 �

U2

gD
,


 �
R

Macp
, � �

lQ

�0cpT0U
. �2.19�

This assumes that kV(z) and 
V(z) are constant; �V and
�V are dimensionless turbulence coefficients of similar
size that are comparable to the drag coefficient, esti-
mated as O(10�3)–O(10�4) over ice (Paterson 1994). In
addition, we have the dimensionless perfect gas law

p � �T. �2.20�

In dimensionless terms, Eq. (2.9) becomes

�AT �A � 
p�A �
QD

wA�0cpT0
, �2.21�

where the prime now represents differentiation with
respect to dimensionless z.

To estimate the size of � in (2.16), we use (2.11) to
write

� �
wAl

UD

pA

p0

N2

�g�D�
. �2.22�

FIG. 2. Contour map of Greenland using data from the National
Center for Snow and Ice Data (see Bamber et al. 2001; Layberry
and Bamber 2001). Contours are plotted every 500 m; the highest
contour corresponds to an elevation of 3000 m ASL. The hori-
zontal line with the arrow indicates the cross section of the ice
sheet passing through the location where the katabatic wind data
was collected; the arrow denotes the direction of the cross section
in Fig. 3.

FIG. 3. Cross section through the west Greenland ice cap. The
solid line indicates the cross section; the dashed line the approxi-
mation given by hD(x) � h0 � a{1 � b[(x/L)]n}1/m. The values
used were h0 � 600 m, a � 2060 m, n � 1.05, m � 2.1, L � 3.67 �
105 m, and b � 1. This corresponds to n � 20 for Glen’s flow law,
and thus implies that flow is almost plastic (see Paterson 1994).
Note that this is drawn moving from west to east (the direction of
the arrow in Fig. 2). The circle denotes the location at which the
data were collected (Heinemann 1999).
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Following Pedlosky (1979), we have (wAl/UD) � Ro,
[N2/(g/D)] � Ro, and since pA � p0, we have � �
Ro2 � 10�2. Consequently, we neglect the term � in
(2.16).

To calculate the order of magnitude of �, we note
that �T � 10–20 K, (e.g., Heinemann 1999); given a
reference temperature T0 � 273 K, this gives a range of
values for � � 3.6–7.3 � 10�2. Using (2.12) and (2.13),
the boundary conditions for T̃ are

T̃ � �1 on 	 � 0, T̃ → 0 as 	 → �. �2.23�

The boundary conditions for u are unchanged.
The choice of parameters here and below is made in

order to be as realistic as possible, but it must be em-
phasized that in the real physical situation, the surface
temperature (and thus �) is not prescribed, but is de-
termined through a radiative energy balance. Our
choice of �T aims to reflect this, and we do not pursue
more realistic boundary conditions for purposes of sim-
plicity.

b. Simplification of equations

Assuming � K �, noting z � h(x), and setting

f 2 �
H


Vl
, PrT �


V

�V
, �2.24�

Eqs. (2.16) and (2.17) become, to leading order,

�uhx � PrTf 2��A

dT̃

dt
� �A

T �A
TA

uhxT̃� �
�2T̃

�	2 , �2.25�

f 2�A

du

dt
� �

�AT̃hx

TA
�

�2u

�	2 , �2.26�

where

� �
H

��Vl

N2

�g�D�

pA

p0
, � �

� f 2

F2 , �2.27�

and PrT is the turbulent Prandtl number, the ratio of the
turbulent diffusivities. Note that we have used Eq.
(2.21) and the definition of � in (2.19) to remove the
adiabatic temperature from the energy equation (2.25).
The derivation of (2.25) and (2.26) from (2.16) and
(2.17) involves the use of the hydrostatic approxima-
tion (2.18), which implies that p � pA[h(x)] � O(�),
together with the perfect gas law (2.20), from which we
derive the approximation (with p � pA)

� � �A � �
��A

TA
T̃. �2.28�

We assume the value � � 4.4 � 10�2 and take U �
21.5 m s�1, H � 120 m (see Fig. 4) and D � 8.6 km. We

take l � 367 km, the length from the ridge to the ice cap
edge along the flow line passing through the location
of data collection. The Brunt–Väisälä frequency is
taken as N � 1.5 � 10�2 s�1 (King 1989), and we take
pA � p0.

The values of �V and �V are not well constrained
beyond their order of magnitude 10�3–10�4. We choose
them in order to constrain the Prandtl solution to pass
through the maximum dimensionless velocity
u � 1 at dimensionless height � � 1, corresponding to
the Greenland data of Fig. 4. This requires us to choose


V � 1.7 � 10�4, �V � 0.9 � 10�3, �2.29�

giving PrT � 0.2, and

f 2 � 1.9, F2 � 5.5 � 10�3, � � 15.3, � � 1.6.

�2.30�

Allocating the upper sign to the case hx � 0 and the
lower sign to hx � 0, the classical Prandtl solution (i.e.,
the limit as f 2 → 0) is

���

��u � iT̃ � �i exp��
�1 � i �

�2
����1�4 |hx |1�2	�.

�2.31�

The constraint that the maximum of u be equal to one
at � � 1 requires

�

�
�

1
2

e���2, �� �
�4

64hx
2 , �2.32�

FIG. 4. Comparison of solution of the Prandtl model (solid line)
with observations (asterisks) collected over west Greenland, 85
km inland from Kangerlussuaq (Heinemann 1999). By requiring
the maximum dimensionless wind speed to be 1 and for this maxi-
mum to occur at a dimensionless height 1 we obtain the scales
U � 21.5 m s�1 and H � 120 m.
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and thus

� �
�2e���4

8�2 |hx |
, � �

�2e��4

4�2 |hx |
. �2.33�

It is from these values (using |hx | � 0.25 computed from
the Greenland location in Fig. 3) that the values of �
and � are inferred, and hence the values of �V and �V

are chosen.
The dimensionless wind flux is

�
0

�

u d	 � �� �

�3�1�4 sgnhx

�2 |hx |1�2
, �2.34�

and we note that as hx → 0, the wind flux tends to
infinity. The problem is that, if f � 0, in the expected
physical limit where the wind speed drops to zero at a
summit, the temperature Eq. (2.25) reduces to one of
pure conduction, and it is impossible to satisfy the im-
position of a surface temperature deficit in an infinite
domain. (Note also that the solution is not too sensitive
to the choice of �T, since it depends on �T through �1/4,
where � � �T.)

3. The improved Prandtl model

The physical resolution of this difficulty lies in the
fact that at the summit, there must be an influx of air
from above to conserve that which begins to accelerate
downslope. More generally, the horizontal change of
wind speed with varying surface slope causes a vertical
air flux.

We therefore allow u to vary with distance down-
slope, such that u � u(x, �). At the top of the katabatic
wind layer, the induced downward vertical velocity �� is

�� �
�

�x �0

�

u d	 . �3.1�

We retain the vertical acceleration terms in Eqs. (2.25)
and (2.26) to obtain the modified system

�uhx � PrTf 2��T̃	 � T̃		 , �3.2�

�f 2��u	 � �T̃hx � u		 . �3.3�

Note that �� is unknown and is to be determined [from
(3.1)]; (3.2) and (3.3) thus constitute a nonlinear system
of equations.

This modification is analogous to that of the Oseen
solution for slow flow past a cylinder (Ockendon and
Ockendon 1995). In that case, the inertial term in the
Navier–Stokes equation is always small, but crucially it
is of the same size as the dominant term far from the

cylinder. In the same way, the vertical advection term is
always small, but becomes comparable to the conduc-
tion term near a summit. By reducing Eqs. (3.2) and
(3.3) to a system of four first-order differential equa-
tions of the form

�	 � A�, �3.4�

where � � (u, T, u�, T�)
T, we find that there are expo-

nential solutions

� � c1w exp��1	� � c1w exp��1	� � c2x exp��2	�

� c2x exp��2	�, �3.5�

where the overbars denote the complex conjugate. The
exponents are solutions of the quartic equation

�2�� � f 2����� � PrTf 2��� � ��hx
2 � 0, �3.6�

and occur in complex conjugate pairs; w and x are the
corresponding eigenvectors.

We note from Eq. (3.6) that a simplification of the
analytic solution may be found if we take PrT � 1; our
earlier choice of parameters gives that PrT � 0.2, but a
more physically realistic assumption is that PrT � 1
(Hinze 1959). The previous lower value may be an ar-
tificial consequence of our attempt to fit the wind pro-
file to data (Fig. 4). In the case where PrT � 1, the
solutions of Eq. (3.6) are

� �
1
2  �f 2�� � � f 4��

2 � 4i����1�2 |hx | �1�2!. �3.7�

We now set P � iQ � [ f 4�2
� � 4i(��)1/2 |hx | ]1/2, and

suppose, without loss of generality, that P � 0. From
the definition of P and Q we have

P2 �
4�� |hx |2

P2 � f 4��
2 , Q �

2����1�2 |hx |1�2

P
. �3.8�

Note that P � f 2�� and thus [since Re � � �1⁄2( f 2�� � P)
and we need Re � � 0 to satisfy the boundary condi-
tions as � → �] we must choose one solution to be

�1 �
1
2

��f 2�� � �P � iQ��, �3.9�

and the other exponent is simply the complex conjugate
of �1, denoted by �1. Upon calculation of the eigenvec-
tors and application of the boundary conditions we ob-
tain the solutions

u ���

�
exp��

1
2

� f 2�� � P�	� sin�Q	

2 �, �3.10�

T̃ � �exp��
1
2

� f 2�� � P�	� cos�Q	

2 �. �3.11�
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From (3.8) we have that P is defined uniquely as a
monotonically increasing function of |�� | . We define
new variables R � 0 and V such that

P � ����1�4 |hx |1�2R, �� �
1

f 2 ����1�4 |hx |1�2V. �3.12�

Equation (3.8) becomes

R2 �
4

R2 � V2, �3.13�

which defines R � R(V):

R ��V2 � �V4 � 16
2

. �3.14�

The dimensionless katabatic wind flux, qkw, is given by

qkw � �
0

�

u d	. �3.15�

Using (3.10) and (3.8), we calculate

qkw ���

�

Q

P�P � f 2���
. �3.16�

Equation (3.12) then gives

qkw � � �

�3�1�4 R � V

2 |hx |1�2 , �3.17�

which enables us finally to calculate V and thus ��:

�� �
�

�x
�qkw� � � �

�3�1�4 �

�x � R � V

2 |hx |1�2�
�

1

f 2 ����1�4 |hx |1�2 V. �3.18�

In this equation, the first equality is just (3.1), the sec-
ond follows directly from (3.17), and the third uses the
definition of �� in (3.12). The last two terms form an
ordinary differential equation for V [since R � R(V)].
This is to be solved subject to the condition of zero
wind flux at a summit (which we take to be at x � 0)
thus

qkw → 0 as x → 0. �3.19�

Near summit behavior

To see whether a solution of (3.18) with (3.19) is
actually possible, we consider the limiting behavior of V
as x → 0. As hx → 0, (3.17) implies that R � V → 0.
From Eq. (3.13) we can write

R � V �
4

R2�R � V�
. �3.20�

Since R � V, this requires V → � as x → 0, and since
also R � V, Eq. (3.20) gives

R � V �
2

V3 . �3.21�

Substituting Eq. (3.21) into Eq. (3.18) gives a first-order
partial differential equation for V:

|hx |1�2V �
f 2

�

�

�x � 1

V3 |hx |1�2�. �3.22�

This has solutions of the form V � Cx�a, where C and
a are constant. If we assume that the summit has a local
profile given by h(x) � a[1 � (1/m)xn], then |hx | �
(an/m)xn�1. Setting " � (an/m), we find

V � �f 2�n � 2�

4��
�1�4

x�n�4, �3.23�

for small x, and thus

qkw � � 64��

�n � 2�3f 6�1�4

x�n�4�1�2�, �3.24�

as x → 0. This confirms that the local behavior of the
solutions of (3.18) can be consistent with the required
boundary condition (3.19).

4. Numerical results

The asymptotic form (3.24) provides a useful local
approximation to start a numerical solution of (3.18).
We have solved the equation using a fourth-order

FIG. 5. Numerical result for a parabolic ice cap such that
|hx | � x. The solid line is the solution of the improved Prandtl
model (3.18); the dashed line represents the classical solution
(2.34). All parameter values used are those calculated for the
Greenland ice cap profile, except that n � 2 and m � 1.
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Runge–Kutta routine, but with the initial value taken
from (3.24) at a small positive value of x. Before we
consider the wind flux over the ice cap profile shown in
Fig. 3, it is illustrative to consider a parabolic ice cap,
such that |hx | � x. Note that for such an ice cap, n � 2
and (3.24) implies that qkw � x, as can be seen in Fig. 5.
This figure shows that, close to the summit, the agree-
ment between the basic and improved Prandtl models is
poor. At a distance of approximately 400 km from the
summit, the agreement becomes good; while at 1000 km
(a suitable scale width for Antarctica, e.g.), the solution
to the improved model has relaxed to the Prandtl so-
lution and the agreement is excellent.

For the wind flux over the Greenland cross section
(Fig. 6) we see that the solutions to the classical and
improved models do not agree at any point. Close to
the summit, the wind flux given by the classical model
is infinite; it then decreases as the ice cap is descended
before becoming zero at the ice cap edge. In contrast,
the wind flux given by the improved model starts close
to zero and then increases almost linearly as the ice cap
is descended. At the ice cap edge, there is a finite,
nonzero wind flux. The relaxation seen in Fig. 5 is not
seen for this profile because of the shorter length scale
and the infinite gradient at the ice cap edge.

As the parameter values have been chosen to provide
the best fit of the Prandtl model to the data at the
location of the data collected, it is unsurprising that the
improved model does not fit the data exactly, although
it can be seen to have the correct shape. We therefore
modify our choice of U and H such that U � 24 m s�1

and H � 240 m (which enables the numerical output

to fit the Greenland data), while fixing the values of
� � 1.6, f 2 � 1.9, PrT � 1, and � � 15.3. This therefore
modifies the values of the remaining parameters such
that


V � 3.4 � 10�4, �V � 3.4 � 10�4,

� � 5.4 � 10�2, N � 7.2 � 10�3 s�1, �4.1�

which are comparable to the values used previously.
We now compare the improved solution [with the

new parameter values given in (4.1)] with observations
collected over Greenland during the KABEG’97 ex-
periment, and numerical output from the Polar MM5
model. The KABEG’97 data on the vertical wind and
potential temperature structures was collected by air-
craft ascents and descents over the ice sheet. A descrip-
tion of the MM5 model may be found in Grell et al.
(1994), and its modification for use in polar regions is
described in Bromwich et al. (2001).

Here we use data collected during the flight on 13
May 1997 at the point marked in Fig. 3 [see Heinemann
(1999), Fig. 10, flight Tpu]. For this flight there was a
strong synoptic forcing caused by a high pressure sys-
tem over the interior of the ice sheet; this acted to
support katabatic wind development. This was also one
of the flights for which conditions were best simulated
by the Polar MM5 model (Bromwich et al. 2001, Fig.
12).

Figure 7 shows a comparison of observed, computed
(with Polar MM5) and the improved Prandtl wind
speed profiles. The improved Prandtl model fits the
data reasonably well, despite its oversimplistic assump-

FIG. 6. Numerical result for ice cap given dimensionally by
h(x) � a[1 � (x/l)n]1/m, where the values of a, m, and n are as
previously. The origin is at the summit. The dashed line represents
the solution of Prandtl’s model (2.34); the solid line that of the
improved model (3.18) presented here.

FIG. 7. Comparison of wind speed profiles, with Polar MM5
data from Fig. 12 of Bromwich et al. (2001; 0900 UTC run), and
KABEG data from Fig. 10 of Heinemann (1999).
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tions, but the gradient of the wind speed is overesti-
mated above the katabatic jet.

The results for potential temperature are shown in
Fig. 8. It is clear that the numerical output here is a far
better match to observations than the solution to the
improved Prandtl model, which, although having the
correct value at the surface and the correct potential
temperature gradient near the top of the katabatic wind
layer, underestimates the potential temperature. The
match could perhaps be improved by incorporating a
vertically varying eddy diffusivity.

5. Conclusions

In this paper, we have derived the classical Prandtl
model for slope wind flow. We have detailed the prob-
lems the model has in reproducing sharp near-surface
gradients because of its assumption of constant mixing
length, and shown that, as the slope tends to zero, the
wind flux becomes infinite. We then derived an im-
proved model, in the spirit of the Oseen approximation,
in which vertical acceleration terms are retained. In this
case, there is still an analytic solution and we have com-
pared this with both observations and numerical model
output.

Upon performing such a comparison, we find that the
improved model matches the data well. We also find
that the improved model simulates the near surface gra-
dients well, although still having a gradient that is too
steep below the katabatic wind maximum, without the
need for a vertically varying eddy diffusivity. An exten-

sion to this work would be incorporation of such an
eddy diffusivity into the improved Prandtl model, in
line with the work of Grisogono and Oerlemans (2001).

Another useful extension would be to consider the
effects of Coriolis terms. This has been done for the
Prandtl model by Stiperski et al. (2007), and is impor-
tant since numerical models show a spiralling of the
katabatic wind streamlines to the left over Antarctica
(Parish and Bromwich 1987). As discussed earlier, Co-
riolis terms are likely to be of importance over length
scales in excess of 300 km.

In summary, we have found that by retaining the
vertical acceleration terms in Prandtl’s (1952) model for
slope winds it is possible to obtain a solution that allows
for variations in slope. The physical justification for this
is that, at a summit where the slope is zero, there must
be an influx of air from above in order for mass to be
conserved. The vertical acceleration terms are always
small, but near a summit they are of the same size as the
conduction terms, and it is therefore no longer appro-
priate to neglect them. The improved model exhibits a
similar behavior to the classical model, but is slightly
better at reproducing the near-surface gradients ob-
served.
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